
NASA Technical Memorandum 78308

Skylab Orbital Lifetime

Prediction and Decay Analysis

P. E. Drchcr, R. P. Little,
and G. Wittcnstcin

George C. Marshall Space Flight Center

Marshall Space Flight Center, Alabama

_r National Aeronautics

• and Space Administrat,on

_tentifte 1rodTealmi_l
Int_mmkmh_

1g_0

_" -- ,,I .:

q98q005468-002



SKYLAB ORBITAL LIFETIME PREDICTION AND DECAY ANALYSIS

Table of Contents

LIST OF TABLES iv

LIST OF FIGURES v

INT RODUCT ION Ix

i. PREFLIGHT LIFETIME PREDICTIONS i-I

i. 1 DENSITY MODEL I-I

i. 2 AERODYNAMICS 1-4

i. 3 SOLAR ACTIVITY PREDICTIONS 1-8

i. 4 PREFLIGHT LIFETIME PREDICTIONS i-i0

2. ORBITAL DECAY DURING THE MANNED MISSION 2-1

3. ORBITAL DECAY DURING THE PASSIVE PERIOD 3-1

4. ORBITAL DECAY DURING THE REACTIVATED SKYLAB 4-1
PERIOD

4.1 ORBITAL DECAY DURING THE EOW PERIOD 4-3

4.2 ORBITAL DECAY DURING THE SI PERIOD 4-20

4.3 ORBITAL DECAY DURING THE TEA PERIOD 4-35

5. SKYLAB REENTRY 5-1

5. I DRAG MODULATION TO CONTROL REENTRY 5-1

5. I. 1 PROCEDURES 5-1

5. I. 2 RESULTS 5-4

5.2 POSTFLIGNT ANALYSIS 5-8

5.2. I RECONSTRUCTION PROCEDURES 5-8

" 5.2.2 RECONSTRUCTION ANALYSIS 5-9

5.3 IMPACT FOOTPRINT ANALYSIS 5-14
L

:_ 6 • SUMMARY AND CONCLUS XONS 6-1

: ACRONYMS 7-1

REFERENCES 8-1

ill

i

1981005468-003



SKYLAB ORBITAL LIFETIME PREDICTION AND DECAY ANALYSIS

List of Tables

TABLE TITLE PAGE _,

1.4-1 Mission Description for Cluster Con- I-ii •

figuration - Mode A

1.4-2 Mission Description for Cluster Con- 1-12

figuration - Modes B, BI, B2, and B 3

1.4-3 Mission Description for Cluster Con- 1-21

figuration and Lifetime Prediction

3-1 Skylab Lifetime (Impact) Predictions 3-2

During the Passive Period

4.1-1 Attitude History During Low Drag 4-4
Period

2

4.1-2 Lifetime Predictions K_ile in EOVV 4-5

4.2-1 Predicted Impact Dates for Constant 4-24
BC

4.2-2 Predicted Impact Dates for SI and TEA 4-25
Attitudes

4.3-1 Predicted Impact Dates Using SI, 121P and 4-41
Tumble BC

5-1 Impact Predictions for July Ii, 1979 5-5

9

!

"f i

, 1
m " I .:

I

] 98 ] 005468-004



SKYLAB ORBITAL LIFETIME PREDICTION AND DECAY ANALYSIS

List of Figures

FIGURE TTTLE PAGE

I-i Orbit Lifetime Predictions Procedure 1-2

1.2-1 Preflight Skylab M&ss History 1-5

1.2-2 Skylab Configuration with the Solar Arrays 1-6
Extended

1.2-3 Final Preflight Aerodynamic Data 1-7

1.3-1 Predicted Solar Activity 1-9

1.4-I Cluster Lifetime Versus Launch Date for 1-14

Discrete Altitudes - Referenced to Launch

of Workshop

1.4-2 Lifetime Vs. Altitude for Mode A 1-16

1.4-3 Lifetime Vs. Altitude for Mode B 1-16

1.4-4 Orbital Decay for 230 NMI Circular Orbit 1-17

Launch Date January I, 1970, Cluster Mission
Mode B

1.4-5 Orbital Decay for 230 NMI Circular Orbit 1-18
Launch Date July i, 1970, Cluster Mission
Mode B

1.4-6 Nominal and f2_ Lifetimes for Various 1-19

Elliptic Orbits Cluster Mission Mode B

2-1 brag Coefficient Vs. Roll Ar-le 2-4

2-2 Actual and Predicted Solar Flux During 2-5
the Manned Period

2-3 Solar Flux Comparison 2-6

: 2-4 Skylab Altitude History During the 2-7

_. Manned Period

2-5 Skylab Actual and Predicted Decay 2-8

Comparison

: 3-1 __ Lifetime Predictions During Passive 3-7

3-2 Actual and Predicted Decay Comparison 3-8

V

1981005468-005



FIGURE TITLE PAGE

3-3 Actual and Predicted Solar Flux 3-9

3-4 Actual and Predicted Solar Flux 3-10

3-5 Actual Solar Activity Data 3-11

3-6 Skylab Actual and Predicted Decay 3-12

Comparison

3-7 Predicted and Actual Decay 3-13

3-8 Predicted and Actual Decay Rates 3-14

3-9 In Orbit Aerodynamic Data 3-15

3-10 Roll Moment Coefficient Vs. Roll Angle 3-16

3-11 Atmospheric Density During the Passive 3-17
Period

4.1-1 Skylab Orbital Decay from Launch to 4-6

Impact

4.1-2 Comparison of Predicted and Actual Solar 4-7
Flux

4.1-3 Actual Solar Activity Data 4-8

4.1-4 EOVV Decay Comparison for Averaged 4-9
Ballistic Coefficient

4.1-5 Beta Angle During the EOVV Period 4-11
(June 9, 1978 to January 25, 1979)

4.1-6 Ballistic Coefficient from June 9, 1978 4-12

to January 25, 1979

4.1-7 EOVV Decay Comparison 4-13

4.1-8 Solar Activity - Actual and Predicted 4-14 ,

t 4.1-9 rOW Decay Comparison Using Theoretical 4-15
BC

"r "

4. I-i0 EOVV Predicted and Actual Decay Rates Using 4-16
Theoretical BC

1

4.1-11 Predicted and Actual Decay Rates During 4-17

rOW Using Theoretical BC

v!

I

• ii

1981005468-006



FIGURE TITLE PAGE

4.1-12 Ratio of Actual to Predicted (No Bias) 4-18

Decay Rate During EOVV Using Theoretical
BC

4.1-13 Ratio of Actual to Predicted (6% Bias) 4-19

Decay Rate During EOVV Using Theoretical
BC

4.2-1 Beta Angle Vs. Date 4-21

4.2-2 Ballistic Coefficient Vs. Date During 4-22
SI Attitude

4.2-3 Decay Comparisons During SI Attitude 4-26

4.2-4 Predicted and Actual Decay Rates During 4-27
SI Attitude

4.2-5 Ratio of Actual to Predicted (18% Bias) 4-28

Decay Rate

4.2-6 Actual Solar Activity Data 4-30

4.2-7 Decay Comparison During SI Attitude 4-31

4.2-8 Predicted and Actual Decay Rates During 4-32
SI Attitude

4.2-9 Ratio of Actual to Predicted (6% Bias) 4-33

Decay Rate

4.2-10 Solar Activity Data 4-34

4.3-1 Constraints for TEA Attitude 4-37

4.3-2 T121 Ballistic Coefficient Vs. Date 4-38

4.3-3 Predicted and Actual Decay 4-39

4.3-4 Predicted and Actual Decay 4-40

5-1 Transition Aerodynamics 5-3

5-2 Population Hazard (And Predicted Longitude 5-6

_ of Ascending Nodes)

5-3 Map of Real Time Results of Impact 5-7
r Prediction

vii

1981005468-007



FIGURE TITLE PAGE

5-4 Drag/Attitude Time line 5-10

5-5 Map of Postflight Results Reconstructed 5-11
Impacts

5-6 Reconstructed Altitude Profile 5-13

5-7 Map of Footprint 5-15

5-8 Detailed Map of Footprint 5-16

[

viii

l ......

1981005468-008



SKYLAB ORBITAL LIFETIME PREDICTION AND DECAY ANALYSIS

INTRODUCT ION

This report partially summarizes chronologically the events
and decisions that affected Skylab's orbital decay and life-

time predictions. It was written to satisfy a number of

objectives but primarily to provide a complete record of

Skylab's orbital lifetime predictions, its actual decay, and

analysis thereof. Since the objectives and activities regard-
ing lifetime were different fo'" various stages of the Skylab

mission, it was convenient to discuss the lifetime for five

periods (preflight, manned, passive, reactivated, and reentry).

Skylab was launched on May 14, 1973, at 17:30 GMT and re-
entered the earth's atmosphere on July Ii, 1979, at 16:37 GMT.

While Skylab was in orbit, it was visited by three different

astronaut crews; and at the end of the last visit, Skylab was

left in a passive mode. On March 6, 1978, the Skylab reactiva-

tion began. Skylab was brought under active control in
June, 1978, and remained in that status (except for a two-week

period) until approximately 12 hours prior to reentry. On

July Ii at 7:45 GMT, Skylab was commanded to maneuver to a
tumble attitude, at which time active control of Skylab ended.

This action was taken in order to shift the most probable

Skylab impact footprint away from the east coast of the
United States and Canada.

During the preflight and other phases of the Skylab orbital

life, a great deal of data was generated and knowledge gained

on orbital decay. Also, considerable capability and experi-

ence in lifetime prediction was accumulated. This capability

will greatly benefit future missions. The actual procedures
and related activities that went into predicting the Skylab

orbital decay, impact time, and reentry point are contained

in this report.

!
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i. PREFLIGHT LIFETIME PREDICTIONS (PRIOR TO MAY 1973)

Discussion of the preflight period was included to provide
an understanding of the design decisions made in the early

mission planning that affected the Skylab lifetime. Some
dlscussion of the technical aspects of lifetime prediction

and techniques are also included. Since numerous design

iterations were made for Skylab, this section provides an

appreciation of the sensitivity of a satellite's orbital
lifetime to various parameters.

A vast amount of orbital lifetime data was generated during

the mission planning phase of Skylab. The parameters influ-
encing orbital lifetime which varied the most were launch

date, predicted FI0.7, initial altitude, size of the workshop
solar array, weight, orbital array orientation, and mode of

operation (schedule of ecents). Aerodynamic characteristics

also varied since they were dependent on other parameters
which changed.

Preflight lifetime predictions are based on several key factors

(See Figure I-i): A sound mathematical formulation of the

decay of the semimajor axis, a description of the atmospheric

density, a description of how the variation in solar activity

affects this density, a prediction of the variation in solar
activities, and the physical characteristics of the satellite;

i.e., its aerodynamic characteristics. Each of these factors

are then modeled in a computer program (Reference 1 and 2),

developed at and for the Marshall Space Flight Center, called

Orbital Lifetime Program (LTIME). The following paragraphs
will describe these models, as well as summarize the preflight

lifetime predictions.

i.i DENSITY MODEL

Prior to 1970, the density model used in LTIME was a "Special"

1962 U. S. Standard Atmosphere. The 1962 U. S. Standard

Atmosphere is a static model compiled by the United States

Committee on Extension to the Standard Atmosphere (Reference 3).

This model provide4 density as a function of altitude. The

"Special" atmosphere used the density tables from the static
model but modified the density to correct for solar activity
and diurnal effects.

The diurnal effect is the day to night variation in nearly all

atmospheric parameters that is caused by the rotation of the

earth. A slight bulge in the daylight portion of the
atmosphere is caused by atmospheric heating. The center of

the bulge follows the sun, lagging by two hours. The maximum

: density occurs at the center of the bulge.

i-i
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There are three parameters included in the term "solar

activity. " They are: the daily 10.7 cm solar flux (FI0.7),
an average of the daily solar flux over some time. interval

(}'10.7), and the geomagnetic activity index (AD) . Predicted
values for FI0.7 are generated at MSFC by the Space Sciences
Laboratory. Long-range predictions of Fln? cannot be made,

_o for l_fetJme predictions it is assumed £hat FI0.7 = FI0.7.

Prior to February, 1978, the value of Ap was determined based
on the value of _i0.7. Space Sciences Laboratory started

making long-range predictions of AD just prior to the end of
the passive phase of the Skylab mission. LTIME was then

modified to use the predicted Ap data.

Since 1970, the Jacchia density model (Reference 4) has been

used in LTIME. This density model was de_eloped by

Dr. L. G. Jacchia (and others) at the Smithsonian Astrophysical

Observatory (SAO). The basic theory for the Jacchia density

model was published in 1964 and updated in 1966, 1967, and
1970. This model included the solar activit:, effects and the

diurnal effects along with a semiannual variation and seasonal-

latitudinal variations and is based on additional study of the

earth's atmosphere, especially with respect to solar effects

on density. The model as used in LTIME is documented in
Reference 5.

The amplitude of the semiannual variation depends on FI0.7.
Maxima occur in April and October, and minima occur in

January and July. Orbital decay and lifetime are dependent
on the inclination of the orbit because of the latitudinal

variation of density. Orbital decay and lifetime are also

dependent on launch date because atmospheric density is a
function of the solar activity since it varies with time.

1-3
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1.2 AERODYNAMICS

An important parameter in lifetime prediction is the

ballistic coefficient, M/CDA, where M is the mass in kg,

CD is the coefficient of drag, and A is the reference area

in m 2. During the preflight period, all these parameters

varied. Numerous mass and configuration changes (size and

shape) were made, which resulted in changes in the CD and
the ballistic coefficient. From 1967 to 1972, the mass of

the workshop increased from 35,600 kg to 74,558 kg (See
Figure 1.2-1).

Thus, preflight aerodynamic data were updated to reflect

changes in the configuration Aerodynamic data sets were

generated for the orbital conliguration of the Orbital

Workshop (OWS) with the docked LM/ATM and OWS solar panels
extended for an altitu4e of 190 nmi (Reference 6), for the

Skylab cluster configuration with the OWS and ATM solar

array extended for a 235 nmi altitude (Reference 7), and

finally once more for the configuration changes (Reference 8).

There was no further update of the aerodynamic data until
after launch. The angle of attack (e) is the angle between

the velocity vector (V) and the positive x-axis (See
Figure 1.2-2). The roll angle (¢) is the .gle between the

plane formed by v and the x-axis and the plane formed by

the x and z axis. Figure 1.2-3 shows some of this data,

the drag coefficient, CD, as a function o_ the roll angle,_,
for two angles of attack, _, of 90- and 0 and also averaged

over the range of _ from 0 ° to 3600 . Using the projected
mass at the end of the manned mission of 74,558 kg, the

ballistic coefficient c_n be determined. The resulting BC

scale is shown on Figure ].2-3. The BC of 122 kq/m _

was the value used in the final preflight lifetime memorandum.

I-4
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1.3 SOLAR ACTIVITY PREDICTIONS

Orbital lifetime is highly dependent on launch date due to

solar activity. The atmospheric density is a function of

solar activity which heats the atmosphere. The higher the

solar activity, the denser the atmosphere will be and the

greater the orbit decay. The largest contribuhor to the

heating of the atmosphere is the averaged solar flux FI0.7'
with the daily solar flux Fln 7 and geomagnetic index Ap
contributing much less. Predictions of FI0.7 are gener&ted
on a monthly basis. Figure I. 3-1 shows the predicted FI0.7.

Predictions shown are January, 1969, corresponding to the

earliest launch date considered; July, 1972, which was the
prediction used for the final prelaunch lifetime prediction

memo; and May, 1973, which was the current prediction at

the time of launch. Both the nominal and the +20 predictions

are shown. The nominal prediction is the best estimate of

what the solar activity will be and the +2t_ prediction is
the associated statistical upper bound. The -2o prediction,

the statistical lower bound, was generated but not shown in

Figure 1.3-1. The +2_ FI0.7 causes the most dense atmos-
phere and the shortest lifetime. Also shown is the 162-day

average, which is based on actual solar activity data.

The solar activity varies in an approximate ll-year cycle.
Figure i. 3-1 shows the predicted FI0 .7 from near the peak
of cycle 20 to near the peak of cycle 21. A change in

launch date meant that Skylab would have been in orbit dur-

ing a different portion of the cycle which would mean a

change in the predicted lifetime.

It should be noted that the orbital atmospheric density
model used in MSFC's satellite lifetime prediction program

was developed based on empirical relationships established

between orbital density and the 162-day average FI0.7, daily

FI0 7, and daily Ap index (See Reference 4). None of these
parameters can be predicted with any acceptable degree_of

confidence. Therefore, longer term smoothed value of FI0 .7

and _p are used in the statistical regression technique to
estimate future nominal (50%) and +2_ (95%) confidence band

values These F1 7 and A_ values are used as inputs to
the orbi 0.tal atmospheric density model and, thereby, to the
orbital lifetime prediction program. No universally accepted

solar activity prediction technique exists in the scientific

community and, therefore, statistical estimates and periodic

updates thereof are necessary. Such was the practice during

the preflight planning period and while Skylab was in orbit.

1-8
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1.4 PREFLIGHT LIFETIME PREDICTIONS

During the preflight mission plcnning phase of the Skylab

program, many mission planning iterations were required that

affected the Skylab lifetime predictions. A partial summary

of these analyses is included to provide an understanding of
how various early decisions (configuration, mass, initial

orbit, attitude, etc.) affected the actual Skylab lifetime.

The planned sequence in 1967 for launching Skylab and the
manned missions, AAP-1, AAP-2, AAP-3, and AAP-4, was as

follows: The AAP-2 flight would place Skylab into orbit
followed by the launch of AAP-1 which would place a CSM into

orbit. At that point, the CSM would rendezvous and dock with

the orbital workshop and perform its mission, after which the
CSM would undock and the CM would deorbit. At some later

time, the AAP-3 flight would place a CSM into orbit followed

by the launch of AAP-4 with the LM/ATM. The AAP-3/CSM
would rendezvous and dock with the LM/ATM. Maneuvers would

be performed to dock the CSM-LM/ATM to the orbital workshop.

The uluster configuration OWS-CSM-LT/ATM mission would then

be performed after which the CSM would undock and the CM
would return to earth. The OWS and the LM/ATM would remain
docked in orbit.

Tables 1.4-1 and 1.4-2 present mission descriptions for
two basic modes that were considered for performing the

Skylab mission and some of the iterations performed on each
of those basic modes. Modes were distinguished by mission

and attitude timeline. Table 1.4-1 presents the mission

description for Mode A and ballistic coefficients M/CDA for
orbital workshop solar arrays of 850 sq.ft.; 1,180 sq.ft.;

1,466 sq.ft.; and 1,588 sq. ft. As can be seen from the

table, there was no significant difference in the M/CDA values
for solar arrays of 1,180; 1,466, and 1,588 sq.ft.. This was

due primarily to the fact that for an increase in a_ea there
was also an increase in mass, such that the ratio remained

essentially the same.

For the Mode A configuration, phases one through five broke

the mission into distinct time intervals for performing each

phase of the mission. Associated with each phase and time
interval was a particular orbital configuration and a pro-

posed orbital attitude for the cluster vehicle. Although the
mass and surface area associated with each phase also changed,

in this instance this was a secondary affect. The attitude

of an elongated vehicle with large solar panels, such as

Skylab, is very critical in orbital lifetime prediction. Nose-on
attitude implies the longitudinal axis of the orbital workshop

iS parallel to the velocity vector. Broadside implies the
I

i I-i0
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longitudinal axis of the vehicle is perpendicular to the

velocity vector with the plane of the solar panels also
broadside to the velocity vector causing maximum drag. Sun

oriented implies that the plane of the solar panels are
always perpendicular or broadside to the Earth - Sun vector.

Table 1.4-2 presents the mission description for Modes B, BI,

B2, and B3, which differ only in orbital attitude. The
parameters of Table 1.4-2 hold the same connotation as those

of Table 1.4-1; however, the term (ASO) associated with

"Broadside" orientation implies that the workshop is con-

tinually broadside but that the solar array panels are sun

oriented. Also, the term (AR) implies that the orbital work-

shop is again broadside but that the solar array panels have

been rotated such that their planes are parallel to the velocity
vector.

It should be reiterated that Modes BI, B 2, and B 3 differ
from Mode B only in attitude of the orbital vehicle during the

first 28-day mission (Phase 2) and during the second 30-day

storage period (Phase 5). It can be seen from Table 1.4-2 that

thoEe changes had very little affect on the ballistic coefficient

M/CDA. Therefore, since there was no significant difference in
the M/CDA for those two phases and since the time period of

those phases was only a small percent of the total orbital life-
time of the cluster mission, no significant difference was

noted in the orbital lifetime prediction of the cluster mission

for the Modes B, BI, B2, or B 3.

The cluster mission underwent a multitude of major and minor

changes in its development from an early concept of the

mission as presented in Table 1.4-1, Mode A, to the later

concept presented in Table 1.4-2, Mode B 3. Some of the early
assumptions for Mode A included: start of the cluster mission
as early as 1969, an initial workshop altitude of 260 nmi to

guarantee a one-year orbital lifetime (+2o probability atmos-
pheric density), and an 850 sq.ft, array of solar panels on

the orbital workshop.

Figure 1.4-1 presents nominal and +2o orbital lifetime

predictions as a function of launch date for circular alti-
tudes of 260, 240, 230, 220, and 200 nmi. This graph reflects

the Mode A configuration assuming launch dates of 1969 through
1971 and a solar array of 850 sq.ft.. As can be seen from

Figure 1.4-1, launch date is a very important parameter in
orbital lifetime. Figure 1.3-1 shows the solar cycle peak

around 1969, so a slip in launch date gave an increase in
lifetime.

" The size of the solar arrays proposed for the orbital work-

shop came under much discussion during the preflight planning

1-13
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phase. The 850 sq.ft, solar array originally planned for

the orbital workshop was found to be inadequate to meet the
power requirement for the cluster mission. Three proposed

array sizes (1,180 sq.ft.; 1,466 sq.ft.; and 1,588 sq.ft.)

were investigated from the orbital lifetime standpoint. An

analysis was performed for Modes A and B assuming 1970 and

1970.5 launch dates for each of the three proposed solor
arrays. It was determined that there was no significant

difference in the orbital lifetime between the solar array

sizes investigated. The maximum difference noted was less

than one percent of the total cluster lifetime. Therefore,
Figures 1.4-2 and 1.4-3 could be used to determine the

orbital lifetime versus altitude for Modes A and B,

respectively, for any of these three array sizes.

By November, 1967, the mission planning process had selected

the 1,180 sq.ft, solar array, an initial altitude for the

orbital workshop of 230 nmi, and operating in Mode B 3 as
defined in Table 1.4-2. Assuming those conditions, _'igures

1.4-4 and 1.4-5 present a detailed decay history for the
cluster mission for launch dates of 1970 and 1970.5,

respectively.

At one point, it was planned that the orbital workshop would

be placed into an initial 205X230 nmi elliptic orbit. The
orbit would then be circularized to the desired 230 nmi through

passivation of the S-IVB at the apogee point of the elliptic

orbit. Nominal impulses obtained from this passivation would

raise the perigee sufficiently to obtain a circular 230 nml

orbit. Should some other impulse other than nominal be

obtained from passivation, the final orbit would not be cir-

cular. Figure 1.4-6 presents nominal and -+2o lifetimes for
the cluster mission for a range of those possible orbit6. The

lifetimes were based on Mode B 3 with a 1,180 sq.ft, array and
launch dates of 1970 and 1970.5.

By September, 1969, the initial altitude for th0e workshop was
chosen to be 235 nmi with an inclination of 35 . By

January, 1970, the inclination had been changed to 50 °.
The launch was scheduled for March 15, 1972; but the launch

date continued to slip. The launch date was November 9, 1972

in December, 1970 and was April 30, 1973 in September, 1972.

The mode of operation also changed. By September, 1969, it
had been decided to maintain a solar inertial attitude during

the mission. The duration of the various phases of the mission

continued to change. A summary of these changes is shown in

' Table 1.4-3. The continued increase in M/CDA reflects the
_ continued increase in the mass of the workshop, from 35600 kg

. in 1967 to 74558 in 1972. The different phases of the mission

were very short compared to the total lifetime so a change in

1-15
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the duration of one or more phases caused no significant

change in the predicted lifetime.

The last preflight lifetime prediction was published in

September, 1972. The mode of operation for the mission was

ignored because it was planned, in order to maintain a repeat-
ing ground track, to maintain the initial altitude for the
entire mission. This made the mission duration a variable

parameter but one with no significant affect on the predicted

lifetime. The M/CDA at the end of the manned mission was
122 kg/m 2. A summary of the lifetime predictions is included

in Table 1.4-3. The final preflight prediction gave impact
as early as November, 1977 for a +20 and as late as June, 1982
for -20 (not shown) with the nominal October, 1979, which was

only three months later than the actual impact.
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2. ORBITAL DECAY DURING THE MANNED PERIOD (MAY 1973 - FEB. 1974)

During the actual manned mission period, which lasted from
5/23/73 until 2/8/74, Skylab was occupied by three different
astronaut crews. The first crew occupied Skylab from 5/23/7_
to 6/21/73. The second crew occupied Skylab from 7/28/73
to 9/25/73. The third crew occupied Skylab from 11/16/7_
to 2/8/74.

As might be e::pected, the actual mission differed somewhat
from the planning; however, the overall mission activity was
close to planned, except for the loss of one of the OWS sola_
panels during the very earliest portions of flight (%63
seconds). This had a major effect on orbital lifetime con-
siderations, and new aerodynamic data had to be generated to
match this orbital configuration (See Reference 9).

The manned period provided an unusual opportunity to correlate
theoretical aerodynamic data with derived data, using orbital
decay methods, and aided in determining uncertainties (biases)
in the atmospheric density model. The key factor which makes
this period so unusual is the knowledge of the Skylab's
attitude. For a known attitude, a theoretical ballistic
coefficient based on the above mentioned aerodynamics could
be calculated.

With knowledge of the actual solar activity and decay, a
derived ballistic coefficient could also be determined. The
ballistic coefficients resulting from the two methods were
then compared to assess the quality of the theoretical aero-
dynamics and/or to determine biases in the density model.

To determine the ballistic coefficient, the known orbital

decay is compared to the predicted decsy, using the actual
solar activity and an estimate for the ballistic coefficient.
The ballistic coefficient is then varied until the actual

decay is matched by the predicted decay. The resulting value
of the ballistic coefficient is used for future lifetime
predictions. Since orbital adjustments were made during the
manned periods, the only time decay comparisons could be
made was between the manned periods.

: Between the manned missions, Skylab was held in Solar Inertial
_ attitude. Using an estimate of the mass, 74525 kg, at the end
- of the first manned mission and Cn as a function of beta

angle (i.e., roll), the theoretic_l ballistic coefficient
could be calculated. An example of the theoretical aerodynandcs

- data is shown in Figure 2-1. Here the drag coefficient is
shown as a function of the roll angle, _, and for three values
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of the angle of attacK, u, 90° 0°, and averaged over thetotal range from 0 v to 360 °. Using a projected mass at the
end of the first manned mission, the ballistic coefficient
was determined and is shown on Figure 2-1. For t:_e ballistic
coefficient as a function of beta I the ballistic c>efficlent
varied from 150 kg/m 2 to 235 kg/m _, with the average value

being 173 kg/m 2. i
i

Concerning the solar activity, both the 10.7 cm solar fl"::

(F_Q.7) and the geomagnetic activity index (AD) are availablea_ly. Preliminary values of FI0" 7 and AD fo_ a given date i
are generally available by mid-afternoonbn that day Z:om
NOI/_ (National Ocea-ic and Atmospheric Administration). The
preliminary value of FI0 7 is usually within 1 or 2 percent
of the final value, but the preii_inary value u_ Ap (which
is a measurement from the Fredericksburg Observatory only)
is usually not very close to the final value. The final value

of Ap' is a_ average from several observatories and could be as
much as 50 percent different from the preliminary value. Final
values are not available until 1 or 2 months later. The pre-

liminary values of F and Ap were used in real time LTIME
decay comparisons. _e7jacchi_ density model calls for these
two parameters and additionally a 162-day average of the F10.7,
which is a midpoint 81 days prior to date of interest to
81 days after the date of interest. The daily values of FI0.7,
the predicted nominal F--10"7, the predicted +2o FI0.7, the
actual 162-day average F10.7, and the actual 13-month average
FI0.7 are shown in Figure 2-2 covering the t_me span of the
manned operation of Skylab. The 13-month average is a
long-term smoothed value utilized in the statistical regression
technique to estimate future solar activity and is consistent
with solar activity records for several hundred years. A
comparison of the various solar flux averages is shown in
Figure 2-3.

Support was received from NORAD (North American Air Defense
Command} on a regular basis. Part of this support was the
calculation of the mean orbital elements. From the NORAD
elements, the semimajor axls was calculated. This is shown
in Figure 2-4 from initial insertion of the Skylab into
orbit until the end of the manned mission period.

Now the actual orbital decay was compared to the decay pre-
dicted with the lifetlme: program. For this prediction, the
"best" decay comparison resulted in a ballistlc coefficient
of 170 kg/m _. This decay comparison is shown in Figure 2-5.
The total decay over this short time interval (36 days) was
only 480 meters. Since there is some uncertainty in the

_ NORAD orbital elements, the uncertainty in the BC is greater
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for this short time interval than it would be over a longer

interval with more decay. A 10% error in BC would cause a

48-meter error in decay. Lifetime predictions using this
BC are discussed in Section 3 of this report. As can be

seen, this compares extremely well with the theoretical

average value of 173 kg/m2; and at least for the Solar
Inertial attitude, the theoretical aerodynamics was quite

good. Analysis of the Skylab results has indicated that
errors in the atmospheric density model are probably mini-

mal at low levels of solar activity. Since the solar

activity was low at this time, the delta is probably entire-

ly due to uncertainties in the theoretical aerodynamics vs.
the real world. Additional analysis of the aerodynamics

and density bias will be included later in this report and
in Reference i0.

During the third Skylab manned period, several altitude

adjustments were made to compensate for the orbital decay.

The altitude adjustments of approximately i0 km raised Skylab

altitude approximately 3 nmi above its initial altitude. The
altitude boost (7.6 km) at the end of the third manned mission

gave a predicted lifetime increase of 259 days for nominal
solar activity and 107 days for +2_ solar activity.
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3. ORBITAL DECAY DURING THE PASSIVE PERIOD (FEB. 1974- JUNE 1978)

When the manned period was completed, Skylab was left in a
gravity-gradient stabilized attitude (February 1974, to

June 1978). This "gravitationally stable" attitude left

Skylab exposed to the minimal forces that could cause

tumbling. Skylab lifetime predictions were made on a regu-

lar basis during the first 2 years following deactivation.
Then came a period of little interest in Skylab's expected

lifetime. In 1977, when interest developed in a possible

Skylab revisit, lifetime predictions were again made. These

predictions are shown in Table 3-1 and graphically in

Figure 3-I.

The first prediction shown assumed the solar inertial (SI)
attitude to impact. A BC of 170 kg/m _ was used, which was

based upon the decay comparison between the first and second

manned missions when Skylab was in a solar inertial attitude.

(The fitting procedure was discussed in Section 2 of this
report.) This BC gave a nominal predicted impact of July, 1981,

and a +20 impact of September, 197S.

After the last crew left, Skylab was rotated to a

gravity-gradient stabilized attitude with the docking adapter

away from the earth. At that time, the OWS solar array was
thought to be hrailing the direction of flight. Using the

theoretical aerodynamic data generated for the in-orbit

Skylab configuration for _(angle of attack) and _(roll angle)equal to 90 , gave a BC of 207 kg/m 2 (See Figure 2-1) This

was used for the second lifetime prediction and gave a

nominal impact of March, 1983, and a +2_ impact of
November, 1979. The increase in BC reflects the effect

attitude has upon a satellite's lifetime. Preflight life-
time predictions assumed that Skylab would be left in the
solar inertial attitude at the end of mission rather than the

gravity-gradient attitude.

By the third prediction (September, 1974), enough actual

decay data was available to determine the BC required to

match the actual decay. Using the same procedures described
in Section 2, a BC of 140 kg/m 2 was found to give a good

decay comparison with the actual decay. Figure 3-2 shows
the actual and preuicted altitude decay from February 7, 1974

to August 26, 1974. Although not an exact fit, it is less

than .2 km off. Using a BC of 140 kg/m 2 , the nominal impact

was May, 1981; and the +2c impact was October, 1978.

Similarly, in 1975, the BC was determined to be 120 kg/m 2

to give the best comparison to the actual decay. Later, the
BC value was determined to be 144 kg/m 2. This value was
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TABLE 3-1 SKYLAB LIFETIME (IMPACT) PREDICTIONS
DURING T_:E PASSIVE PERIOD

Memo Date Ballistic Predicted Impact

Coefficient (Mo/Yr or Mo/Da_/Yr)
(kg/m 2 )

Nomi na I +2a - 2a

Aug. I, 1973 170 7/81 9/78 10/85

Mar. Ii, 1974 207 3/83 11/79 6/92

Sep. 3, 1974 140 5/81 10/78 10/84

Nov'. 27, 1974 140 4/81 10/78 6/84

Dec. 12, 1974 140 4/81 10/78 6/84

Feb. 20, 1975 120 1/81 9/78 1/83

May 20, 1975 120 12/80 9/78 11/82

Jul. 27, 1977 144 12/2/80 8/21/79

Aug. 16, 1977 144 12/7/80 8/23/79

Oct. 15, 1977 144 4/16/80 5/31/79

Nov. 18. 1977 144 3/23/80 5/14/79

Dec. 18, 1977 144 3/14/80 5/22/'19

Feb. 9, 1978 144 12/21/79 5/3/79

Apr. i0, 1973 144 8/29/79 4/13/79

3-2
t

I

1981005468-040



used for lifetime predictions until Skylab was reactivated

in June, 1978. The 144 kg/m 2 became the official baseline

for many comparison studies, which is the reason it was not

changed for such a long period.

Figure 3-1 graphically illustrates the lifetime predictiuns

that were previously discussed and summarized in Table 3-1.

The 50% or nominal and 97.7% or +2_ level predictions are

shown. Note that for most of the passive period, the actual

impact was bounded by the nominal and +2c predictions• For

most uf this period, the 2a predictions were more accurate

than the nominel; but as the solar activity predictions

increased in m_qnitude, the nominal prediction moved closer

to the actual impact. At the end of the passive period,
the nominal prediction was more accurate than the +2s
prediction.

The predicted solar activity data used for lifetime predic-
tions did not vary much from 1973 to 1977. Figure 3-3 shows

the nominal and 95% confidence level _I0.7 for three typical
predictions. The nominal and 95% confidence level m_ximum

were approximately 120 and 170, respectively. For comparison,

the actual 162-day average _ 7 is shown. The actual _i0.7i0
started increasing rapidly in 1977, and the later solar
activity predictions reflected this increase (See Figure 3-4).

By the middle of 1978, the predicted nominal so_ar flux

maximum was almost as high as earlier 95% levels and the
95% confidence level had increased to greater than 200.

Figure 3-5 shows the actual daily Fln 7, the actual 162-day

average FI0 7, and the actual A p forVthe time period 1974-1978.

The 162-day average _I0.7 was below 80 until April,_1977.

Then in July, 1977, there was a marked increase in FI0 7 and
in November, 1977, an even grcater increase. The solar

activity predictions reflected this increased solar activity
by increa-ing, and the lifetime predictions reflected the

increase by decreasing.

Obviously there are some questions which needed to be

answered concernlng the variation in the BC derived from

actual data. Several avenues of study were followed. A

detailed look was taken at the daily solar activity, and how

it differed from the 13-month predicted data and how this

affected the orbital decay. An extensive study was made
of the atmospheric model used in LTIME. The theoret!ca%.

aerodynamic data were used to determine if there was a

correlation between expected attitudes and the derived BC.

A decay reconstruction analysis was made "after the fact" to

find a constant BC to fit the Skylab decay for the entire

passive period February 1974, to June 1978. Figure 3-6 shows
the actual Skylab semimaJor axis and the predicted decay for
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three different ballistic coefficients, using the actual

solar activity data as input to the atmospheric density

model. The "best" decay comparison was found utilizing a

ballistic coefficient of 130 kg/m 2. For more detail on this
comparison, Figures 3-7 and 3-8 are included, showing the

predicted and the actual altitude decay and the decay rates
during the passive period. The actual and predicted decay

matched very well until the middle of 1976 when the Fredicted

decay began to slightly exceed the actual decay. By hhe end

of 1977, the actual decay was exceeding the F,_edicted decay.

Over the entire passive period, the actual and predicted
altitudes d_ffered no n_)re than 1 km.

The anticipated (207) BC corresponding to the "as left"

gravity-gradient (GG) attitude was much larger than the
derived. As additional attitude information became avail-

able, analysis of the theoretical aerodynamics indicated a
much smaller BC. Figures 3-9 and 3-10 show these aerody-

namic data. The drag coefficient, CD and the BC are shown

as a function of the ro_l angle, _, for angles _f attack A
e, of 80 ° , 900 , and 100 v. In GG _ = 90 _, so 80 and 100 v

are also shown to give the variation. Similarly, in
Figure 3-10, the roll moment coefficient is shown as a

function of _ for the same a's. Thus, considering only

aerodynami_ forces the Skylab would attempt to trim out at

a ¢ of 137-. This would yield a BC of approximately '114 kg/m 2 ,
whereas 207 kg/m 2 corresponds to a _ = 90 , well away from
this value. The much smaller BC derived from the decay com-

parison indicated that the Skylab OWS array was not exactly
trailing as had originally been expected. In ,fact, further

investigation revealed that Skylab had actually been left

with the ATM trailing rather than the OWS solar array trail-

ing. The BC for the ATM trailing attitude was 96 kg/m _.

Thus, the gravity-gradient stabilized attitude of Skylab was
not with the ATM or OWS solar array exactly trailing the
direction of orbital motion.

Since this "preliminary analysis" considered only aerodynamic

forces, a dynamics analysis was performed considering aerody-

namic and gravity gradient forces (Reference ii). This

analysis indicated that an equilibrium condition existed at
a mean _ of 192_ during the major portion of the passive

period. This % would yield a BC of 101 kg/m 2. Initially,
the vehicle's motion would have consisted of only small

amplitude oscillations about the local vertical. However,

instability is produced when a gravity gradient stabilized

body is subjected to a torque (aerodynamic force) which
forces it slightly away from the true gravity gradient

_ equilibrium position. Given this instability, it was inevi-
: table that large amplitude motion would build up. Because of

the asymmetric OWS solar array configuration of Skylab, the
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aerodynamic moments were unbalanced, producing a tendency to

spin up about the long axis. An independent decay comparison

was done at the Smithsonian Astrophysical Observatory (SAO)

by some people involved in the development of the Jacchia

density model. The SAO fit was a long-term fit over the

entire passive period and resulted in a BC of 121 kg/m 2.

These data (BC = 121 and 130) are in good agreement with the

BC (i01 to 114) derived from the dynamics simulation.

There are several possible explanations for the ballistic

coefficient changes required to match the actual decay and

the remaining differences. Primarily, the density model may

not have sufficiently modeled the solar %ctivity effects.
Secondly, Skylab's attitude could have b_en changing. Finally,

uncertainties in the actual orbital decay and solar data con-

tribute to the bias. These effects are under further study

and will be addressed later in a more detailed report (Refer-

ence i0) which will deal with this phenomena for Skylab and

other satellites. In this report, this phenomena will be

treated as a bias term required to cause the actual and pre-

dicted decay to match. However a brief summary of the
scenario that Skylab might have undergone is given here to

give the reader a brief explanation of the remaining differences.

Postflight anal_'tical dynamics studies and actual flight experi-

ence indicated that thexe is no actual trim point, but the GG
forces would predominate at low atmospheric density (higher

altitudes and/or low solar activity), but aerodynamics would

also influence the motion at higher atmospheric density

(lower altitudes and/or high solar activity). This is also
somewhat confirmed via data received from NORAD as to their

analysis on the Skylab attitude, both right after the last
crew left it and during the period of high interest prior to

activation. This is further confirmed by the data gleaned

via telemetry, right after activation and during the 10-day

period after loss of attitude reference (Reference 12). While

the atmospheric density is low, any motion would probably be

small and the period of oscillation long, as the density
increased the period would become smaller. This was confirmed

by NORAD reports of their analysis of the Skylab attitude from
1974 to 1978. For the bulk of this time, August 1974 to

January 1977, Skylab was near GG with little or no discernible

motion. This was probably true through July 1977. At this

time, the solar activity began to increase and the atmospheric
density at Skylab's altitude showed a significant change (See

Figure 3-11). The combination of aerodynamic forces and
the increased solar activity caused an increase in Skylab's

motion. From November 1977, until January 1978, information

available indicated that Skylab went from a barely discernible

to a very noticeable motion, finally breaking out of the near
GG attitude. Data received via telemetry after activation
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showed Skylab spinning wi_ rates near l°/s and increasing.

Data received in July of i: ] during the time following the

loss of attitude reference show rates building up very
rapidly to spin rates almost double that of the activation
data.

Additionally, as mentioned above, the atmospheric density
model has a bias. This bias tends to vary with changes in

solar activity. The reconstructed BC to fit observed decay

appears lower as the solar activity goes up, and higher as
it decreases. Over a short term effect, these biases can

be quite high (>20%), but over the long haul _s about 10%.

This was all identified as a result of the study of the

atmospheric density model used in LTIME.

Two items were modified in LTIME, both input data items.

More data points were added to the density tables in the
atmospheric density model, and it was determined that the

average FI0 7 cm flux, 8_} should be a 162-day (±81 days)average rat6er than an 0a7y running mean (-81 days).

Thus, the apparent sequence of events was that Skylab was

left in a near GG (only longitudinal or X axis GG), with the
Solar Array Systems left broadside. Since this is not a

trim from either GG or aerodynamic consideration, it rolled

towards a roll trim point and starte_ a slow, very slow
initially, oscillation about the 192" roll trim mentioned

earlier and stayed this way until around July, 1977. At

that time, the solar activity began increasing significantly

with a corresponding increase in atmospheric density (See
Figures 3-4 and 3-11). The BC appeared to change, and indeed

the motion probably began increasing. As these trends con-

tinued, the vehicle finally broke out of the near GG attitude

it had been in for such a long time and began a "random"

tumble, probably by November or December, 1977. Later

dynamics analysis using theoretical aerodynamics indicated
a BC range from 135 to 160 kg/m 2 with the most likely value

for this tumble of 150 kg/m _.

With the increased motion of Skylab, the theoretical ballis-

tic coefficient was expected to increase toward that of a
random tumble. However, toward the end of 1977, as the solar

activity began to increase, the decay comparisons indicated
that a smaller ballistic coefficient was required. This

unexpected behavior was determined to be a density model

bias which was due to the model overcompensating the density

for sharp increases in the solar activity (phenomena discussed
further in Section 4 of this report). These are the factors
that caused the inconsistencies in the ballistic coefficient.
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4. OP_ITAL DECAY DURING THE REACTIVATED SKYLAB PERIOD

(JUNE 1978 - JULY 1979)

At the end of the manned period, Skylab was expected to

remain in orbit between 5% and 9 years (November 1979, to

March 1983). This prediction was based on the March, 1974

prediction of solar cycle 21, a theoretical bal'_istic
coefficient of 207 kg/m 2 and the assumption that Skylab

would remain in a "gravity gradient" attitude with the ATM

forward until impact. By the fall of 1977, it was apparent

that Skylab had experienced a significant increase in orbital

decay due to the unexpected sharp increase in the solar

activity at the beginning of Cycle 21, which further reduced

Skylab's expected lifetime. Skyla_ was then predicted tc_
reenter the earth's atmosphere in late 1978 or early 1979

unless something was done to reduce the drag forces acting

upon ft.

It was necessary to make a decision to either accept an

early uncontrolled reentry of Skylab or to attempt to

actively control Skylab in a _wer drag attitude, thereby

extending its orbital lifetime until a Shuttle mission
could effect a boost or deorbit maneuver with Skylab. From

the fall of 1977 on, it became increasingly important to

accurately determine the remaining lifetime of Skylab in
order to ascertain which of several options might be avail-

able to NASA in regard to the disposition of Skylab. As the

planning progressed and _he various options were selected,
their effect on mission lifetime was continually monitored.

Recontact was established with Skylab March 6-13, 1978.

Systems reactivation took place from April 24 - June 8, 1978.
Skylab was maintained in several different operating modes

during the reactivated period. The solar inertial (SI)

mode had been the major operating mode during the manned
missions. When initial plans were made to extend the orbi-

tal lifetime of Skylab, the end-on-velocity-vector (EOVV)

mode was developed to utilize its near minimum drag character-

istics. After plans for a reboost/deorbit mission were

abandoned, the torque equilibrium attitude (TEA) mode was

developed to control the vehicle as the orbit decayed to the
lower altitudes toward reentry with the resultant increased

aerodynamic torques.

Following systems reactivation, Skylab was maneuvered into
the EOVV attitude for the purpose of extending its orbital

lifetime. This began on July ii, 1978, and lasted until

January 25, 1979. Skylab was then returned to the SI
attitude. The SI mode was primarily a low maintenance
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holding pattern mode for vehicle control and maximum
electrical power, while preparations were made for entering

the TEA mode. The high drag TEA mode was used from June 20,1979

until the vehicle was tumbled just prior to reentry on

July Ii, 1979. The maneuver to effect a tumble was initiated

at 7:45 GMT on July ii, 1979. The official NORAD-determined
impact occurred at 16:37:28 on July Ii, 1979.
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4.1 ORBITAL DECAY DURING THE EOVV PERIOD (JUNE 1979 -

JANUARY 1979)

The EOW mode was a near minimum drag attitude with the

relatively small surface areas of the front or back ends

of Skylab being pointed approximately along the velocity
vector. The vehicle was then rolled so that its solar

arrays pointed toward the sun at orbital noon. The sequence

of events during the low drag attitude management is shown
in Table 4.1-i.

The EOVV mode was utilized in the first part of the Skylab

Reactivation period to reduce the Sky]ab decay rate. It

was desired to extend the orbital life of Skylab until a

reboost/deorbit mission by the Space Shuttle could be accom-
plished. The effect of the EOVV mode on the decay rate is

illustrated by the altitude profile in Figure 4.1-1. There

was a noticeable decrease in orbit decay rate (from 128 m/day

to 51 m/day average) when Sky!ab was first maneuvered into

the EOVV attitude in June, 1978. Likewise, an increase in

the orbit decay rate (from 144 m/day to 385 m/day average)

occurred when Skylab was maneuvered from the EOW attitude
to the Solar Inertial attitude in January, 1979. The

average theoretical BC in the EOW mode was originally

estimated to be 325 kg/m 2. Lifetime predictions using this

BC are shown in Table 4.1-2. For these predictions EOVV

attitude was assumed to be held until impact.

On a regular basis, decay comparisons were made to determine
the BC necessary to fit the actual decay. Daily values are

available for FI0 7 and An but there is a problem for FI0.7.
Since F10.7 is supposed tS'be a 162-day average (81 days prior
to the date and 81 days past the date) in the atmospheric

model, the most recent known value of FI0--7 is 81 days old.
For the 81 days in the future, predicted FI0 .7 values were

used with FI0.7 = FI0.7. This introduces an uncertainty into
the [rocedure_ To reduce this uncertainty, a 55-day average

was used for FI0.7 in some runs. This required only 27 days
of future F10.7 values, which is one solar rotation. The

27-day predictions of F10.7 are available from NOAA but are
not very reliable, as illustrated in Figure 4.1-2. Thus,

the predicted nominal values of FI0.7 were generally used.

In December, 1978, a decay comparison was made to determine

the BC. The starting date for this comparison was August 2

so that the abrupt BC changes between June 9 and July 26

would not have to be modeled. Figure 4.1-3 shows the daily

FI0.7, the 55-day average FI0 7, and Am . Figure 4.1-4
shows the actual decay and the predicted decay for a BC of
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TABLE 4.1-1 ATTITUDE HISTORY DURING LOW DRAG PERIOD

I
Date ..... I Event

June 9, 1978 Initial SI Acquired

June ii, 1978 Initial EOVV Acquired

June 28, 1978 Retreat to SI

July 6, 1978 Second EOVV Acquired

July 9, 1978 Loss of Attitude Reference

July 19, 1978 SI Acquired

July 25, 1978 Third EOVV Acquired

January 25, 1979 End of Low Drag Attitude Management
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TABLE 4.1-2 LIFETIME PREDICTIONS WHILE IN EOVV

Predicted Date To Reach

Date of MSFC Solar 150 nmi • I_ •
Vector Date Activity Prediction NOM* +2_ NOM* +2_

7/4/78 July, 1978 4/13/80 11/6/79 6/26/80 1/3/80

7/25/78 Auqust, 1978 3/28/80 11/4/79 6/18/80 1/1/80

8,/21/78 September, 1978 4/13/80 11/22/79 6/27/80 1/22/80

9/6/78 September, 1978 4/10/80 11/23/79 6/24/80 1/23/80

9/29/78 September, 1978 4/9/80 11/25/79 6/23,/60 1/25/80

9/29/78 October, 1978 4/5/80 12/2/79 6/18/80 2/3/80

10/27/78 October, 1978 3/31/80 12/4/79 6/12/80 2/4/80

11/2/78 November, 1978 3/8/80 11/24/79 5/16/80 1/24/80

11/27/78 November, 1978 3/3/80 11/25/80 5/11/80 1/25/80
h

12/3/78 December, 1978 2/22/80 11/25/80 4/30/80 1/23/80 1

i/1/79 December, 1978 2/18/80 11/26/80 4/26/80 1/24/80 !

1/1/79 January, 1979 2/9/80 11/20/79 4/17/80 1/18/80 :

*Solar Activity Probability Levels

Nominal = 50%
+2_ = 97.7%
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TYPICAL 27 DAY PREDICTION OF DAILY F10.7 (FROM NOAA)
O,----O ACTUAL OAILY F10.7 _
- - -- NOMINAL PREDICTEDF10.7 JUNE 1979

SOLAR FLUX

240--

220 - __

"' ...........
160 - XO _0 0....0/

Xo/°'_ o

140- X_O//

120 - I , _ , l
| 11_ 27

6/12/79 6/20 iS/211 7/8/79

DAY/DATE

FIGURE4. 1-2 COMPARISONOf'PREDICTEDANDACTUALSOLARFLUX
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300 and a BC of 325 kg/m z. The BC of 300 kg/m 2 fit the
actual decay much better than the BC of 325 kg/m 2, but a

more detailed modeling of the Skylab BC was required.

Since the long axis of the vehicle was essentially in the

orbit plane and the vehicle roll angle was a function of

the beta angle (angle between earth-sun line and orbital

plane), it was possible to derive a time history of the
theoretical BC as a function of beta angle. Figure 4.1-5

shows the beta angle history for the entire EOVV time period
frcm June 9, 1978 to January 25, 1979. Figure 4.1-6 shows

the theoretical BC histo1_ for this time period. The BC

during the EOW mode varied from 303 to 333 kg/m 2.

Figure 4.1-7 shows the actual decay and predicted decay

for a BC of 325 kg/m 2 (constant) and a BC varying with beta
angle.

After the fact, when the actual 162-day average F_0.7
was known, another BC fit was made. Figure 4.1-8shows

the daily FI0 7, the 162-day average FI0.7, and predicted

nominal and +2o FIQ,7- Two sets of predicted F10.7 are
shown: August 1978, and December 1978. However, using

the final solar data and BC as a function of beta angle

did not cause the predicted decay to match the actual decay
after about two months.

This behavior is attributed in part to rapid changes in

the solar activity that are not totally accounted for in

the orbital atmospheric density model utilized in the orbit

lifetime prediction program. This phenomenon was verified
in house and in discussions with SAO (Smithsonian Astro-

physical Observatory), whose model forms the basis for
Reference 4, as well as by observation and comparison with

other satellites. When a 6% bias was added to the density

as computed by the Jacchia density model, th_ predicted

decay matched the actual quite well. Figure 4.1-9 shows the

actual decay and the predicted decay with and without the
6% bias. Figures 4.1-10 - 4.1-13 show the predicted and

actual decay rates and the ratio of the decay rates for no

bias and 6% density bias respectively.

The average value of the theoretical BC (as a function of

beta angle) during the EOW period was 313 kg/m 2. The time

spent in the EOVV attitude extended Skylab's orbital life-
ti_e approximately 3_ months. If Skylab had remained in

the EOW attitude until impact, reentry would have occurred

in January 1980.
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4.2 ORBITAL DECAY DURING THE SI PERIOD (January 25, 1979 -
June 21, 1979)

Prior to the decision in December of 1978 to terminate

efforts to attempt a controlled reboost or deorbit of Skylab

with an orbital retrieval system, every effort possible was
made to keep Skylab in orbit as long as possible. After

this decision, extending Skylab's orbital lifetime was no

longer an objective. Skylab was placed in the SI control

attitude on January 25, 1979, to reduce the operational

maintenance required; and attention was directed to the re-
maining orbital lifetime, considering the SI attitude.

Skylab was in the SI attitude until June 20, 1979.

Precise derivation of the ballistic coefficient (BC) for this

attitude was necessary. Since the SI attitude places the

plane of the solar arrays perpendicular to the earth/sun line,

Skylab's orientation relative to the velocity vector and the

resulting BC were continually changing. It was necessary to
take this into account in predicting the ballistic coefficient.

Knowing that the long axis of the vehicle (X-axis) was essen-

tially in the orbit plane and that the vehicle 3"oll angle was

a function of the beta angle, it was possible to derive a time

history of BC as a function of beta. Figure 4.2-1 shows the

beta angle for the SI period. Figure 4.2-2 shows the result-

ing BC, based on theoretical aerodynamics for the SI period.
The BC varied from a minimum of 140 to a maximum 220 kg/m 2.

During the time Skylab was in the SI attitude, several uncer-

tainties compounded the task of predicting Skylab's lifetime.

First, to what minimum altitude could Skylab be controlled
in the SI attitude? Second, in what attitude could Skylab

be controlled to a lower altitude? Third, what would be the
ballistic coefficient for this attitude? Fourth, when would

the attitude change occur? Finally, the date and altitude
that tumble would occur were unknown. In order to make the

best possible lifetime prediction for Skylab, these questions
had to be answered. They were eventually answered and re-

flected in the lifetime prediction strategy. Operational

limitations of the LTIME program further complicated the

task because the program could not model the BC vs. beta

angle and TEA together. Until these questions were answered,

it was necessary to maintain several strategies in predicting

Skylab's lifetime and adjust as new information became
avai lab le.

Early in the SI period, a constant BC of 150 kg/m 2 was used

as the primary strategy. This value was near the average

for the SI attitude for BC as a function of beta over the

expected time (January 25 - May 24) to be in the SI attitude.
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Although somewhat fortuitous, dynamic analysis for Skylab

in a random tumble indicated a BC range of 135 to 160 kg/m 2,

with the average being 150 kg/m 2. Initially, this strategy

provided the best prediction of Skylab's lifetime. Predic-
tions based upon this strategy were maintained throughout

the SI period to provide a consistent lifetime prediction

data base to evaluate daily solar activity effects upon

Skylab's decay. The 6% bias determined in the EOVV period

was also used. Table 4.2-1 summarizes the lifetime predic-
tions made for this strategy.

As the expected time to end the SI attitude shifted to a
later Hate, a variable BC as a function of beta (See

Figure 4.2-2) was used to 150 nmi. Skylab was expected to
go out of control in the SI attitude at 150 nmi and tumble

afterwards to impact. The TEA attitude capability was uncer-

tain at this time. The lifetime predictions included the
variable BC for SI and 150 kg/m 2 for the tumble.

As new information became available, the strategy changed

to holding SI to impact. The projected date to go to the

TEA attitude was uncertain but expected to be later. The
SI control limit was lowered to 140 nmi, and the BC as a

function of beta was approximately 150 toward the end of

Skylab's expected lifetime.

Finally, the projected date to go to the TEA attitude,

the expected BC for the TEA attitude, and the minimum con-
trol altitude (70-80 nmi) were determined. This information

led to the final strategy of making lifetime predictions by

modeling the SI versus beta angle, plus the TEA attitude BC

profile and tumble at 75 nmi. By this time, due to the
short remaining lifetime, it was feasible to model the BC

changes by table input for all three attitudes. Table 4.2-2

summarizes the results of these lifetime predictions.

The actual solar activity data was used with the BC as a

function of beta angle (from Figure 4.2-2) to determine the

density bias by reconstruction, if any, that would be needed

to fit the actual decay, fhe predicted decay did not match

the actual decay very well without a bias. Figure 4.2-3

compares the actual decay with the predicted decay for a
zero, 6%, and 18% bias. During most of the SI period

(February I, 1979 to June 7, 1979), a bias of 18% was needed

to match the actual decay. Figures 4.2-4 and 4.2-5 show the

predicted and actual decay rates and the ratio of the decay

rates, respectively, for the 18% bias. This bias, as stated

earlier, is quite sensitive to rapid changes in solar activity,

expecially when decay comparisons are made over a relatively
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TABLE 4.2-1 PREDICTED IMPACT DATES

FOR CONSTANT BC*

Date of Solar | . Impact DateVector Date Activity Prediction ] Nominal 2o

1/25/79 January, 1979 8/12/79 7/4/79

2/1/79 January, 1979 8/1/79 6/28/79

2/12/79 February, 1979 7/28/79 6/27/79

2/22/79 February, 1979 7/24/79 6/26/79

2/28/79 February, 1979 7/20/79 6/24/79

3/1/79 February, 1979 7/12/79 6/20/79

3/16/79 March, 1979 7/10/79 6/22/79

4/2/79 March, 1979 7/4/79 6/21/79

4/16/79 April, 1979 7/3/79 6/23/79

5/1/79 May, 1979 7/3/79 6/25/79

5/15/79 May, 1979 7/5/79 6/29/79

5/25/79 May, 1979 7/8/79 7/3/79

5/29/79 May, 1979 7/8/79 7/6/79

5/30/79 May, 1979 7/9/7q 7/4/79

5/31/79 May, 1979 7/9/79 7/4/79

6/4/79 June, 1979 7/10/79 7/6/79

6/5/79 June. 1979 7/10/79 7/6/79

6/6/79 June, 1979 7/11/79 7/7/79

6/7/79 June, 1979 7/11/79 7/7/79

6/8/79 June, 1979 7/11/79 7/8/79

6/11/79 June, 1979 7/12/79 7/9/79

6/12/79 June, 1979 7/12/79 7/9/79

6/13/79 June, 1979 7/12/79 7/9/79

6/14/79 June, 1979 7/12/79 7/10/79 %

6/15/79 June, 1979 7/13/79 7/10/79

6/18/79 June, 1979 7/13/79 7/10/79

6/19/79 June, 1979 7/13/79 7/11/79

6/20/79 June, 1979 7/13/79 7/11/79

6/21/79 June, 1979 7/13/79 7/11/79

6/22/79 June, 1979 7/13/79 7/11/79

6/25/79 June, 1979 7/13/79 7/11/79

"150 kg/m 2 with 6% Bias
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TABLE 4.2-2 PREDICTED IMPACT DATES FOR
SI AND TEA ATTITUDES

I Date of Solar 1 _Tm__p_act Date 1Vector i Activity Prediction (Nom) (+26) BC Conditions

3/23/79 April, 1979 7/13/79 6/28/79 SI to Impact (functior
of _ angle)

4/_/79 April, 1979 7/10/79 6/27/79 SI to Impact (functior

of _ ang±e)

5/16/79 May, 1979 6/28/79 6/23/79 SI (function of _) +
TEA on 5/24/79

5/18/79 May, 1979 6/28/79 6/z3/79 SI (function of 6)

TEA on 5/24/79

5/21/79 May, 1979 6/28/79 6/23/79 SI (function of _) +
TEA on 5/24/79

5/23/79 May, 1979 7/9/79 7/4/79 SI (function of 8)
TE_ on 6/21/79

5/30/79 May, 1979 7/10/79 7/6/79 S] (function of 8) +

2EA on 6/21/79

6/12/79 June, 1979 7/10/79 7/7/79 SI (function of 8) +
TEA on 6/21/79

6/22/79 June, 1979 7/10/79 7/8/79 SI (function of 8) +
TEA on 6/21/79
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shor _ time period. Some correlation may be observed upon

comparison to the solar activity on Figure 4.2-6, which shows

the FI0.7, FI0.7, and_Ap for the SI pc_iod. The 162-day
average is shown for FI0 .7. Toward the end of the SI period,
it was apparent that the density bias had changed. This can

be seen in Figure 4.2-5. The bias change occurred around

April 26, 1979. A decay reconstruction for the last month
of SI was done to determine the new bias. Figures 4.2-7

through 4.2-9 show the predicted and actual decay, predicted
and actual decay rates, and the ratio of the decay rates,

respectively, for the time period from May 25, 1979 to

June 22, 1979. At the time of the initial decay reconstruc-

tion the preliminary Fln 7 data and the 55-day average F 0
were used, and a 4% density bias was required to match t_e "7
actual decay. Later, when the final solar data was available,

the 162-day average was used; and a 6% density bias was re-

quired to match the actual decay. This 2% difference is due
to the' difference between the actual and final solar data,

combined with the difference between the 55-day and 162-day

FI0.7. Figure 4.2-10 shows the preliminary and final values

of Fi0 7, the 55-day FI0.7, and the 162-day average FI0.7.
As sta£ed earlier, values of FI_ 7 a,ld An are available in
real time, but final data is no£'&vailab_e until 1 to 2 months

later. Usually, there is little change in the F10.7 data from
preliminary to final. However, this is not the case with the

Ap data because the prelimina_] is the observed value from
one observatory, and the final data is an average value for
a number of observatories.
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4.3 ORBITAL DECAY DURING THE TEA PERIOD (June 21, 1979 -

July ii, 1979)

Development of the TEA control mode (Reference 13) resulted

from a decision to try to control the impact of Skylab to a

particular orbit, one which would be characterized by a low

population density. Skylab was in the TEA control mode from
June 21, 1979 until shortly before impact on July ii, 1979.

There were essentially two constraints which determined when

the TEA control scheme could be used. One of these depended

upon the sun angle on the solar arrays. The other constraint
was the minimum altitude (%140 nmi) at which Skylab could
still be controlled in the SI attitude.

It thus became necessary to accurately predict both the

beta angle and the altitude of Skylab such that a time (window)

could be picked where sufficient power would __ available

during the total time Skylab would be in the high drag
attitude (TI21P). It was also necessary for the window to

open before Skylab's altitude fell below the SI control

threshold. Figure 4.3-1 shows the beta angle and altitude

that were acceptable for TI21P control. AS can be seen,

June 20, 1979 to June 23, 1979 satisfied both the power and
altitude constraints for entering TI21P. Based upon predic-

tions of altitude and beta angle, June 20, 1979 was selected

as the date to go to the new attltude, which corresponded to

an altitude of 142 nmi. It was then necessary to derive a
BC for the TI21P attitude. Initial estimates were predicted

by dynamics and control simulations of the vehicle in its
operating environment. Final values were determined by

methods developed by observing the orbital decay behavior.

This method compared the decay rate of the vehicle for
various BC's to that BC which gave the best fit of the actual

decay rate. The method was modified by checking other satel-

lite decay rates in order to be assured that atmospheric model
variations and other factors were accounted for in the calcu-

lation of the BC.

Figure 4.3-2 shows the resulting BC for the TI21P attitude.

Figure 4.3-3 shows the predicted and actual decay of Skylab

during the time of the TI21P attitude where predicted decay '

is determined using the actu_l solar data and the predicte_

BC's. Figure 4.3-4 shows that a 3% density bias is required
to match the actual decay. This bias included uncertainties

in the vehicle attitude, the aerodynamic data, and the solar

activity data. As can be seen, the predicted and observed

decay curves were quite close in terms of a daily average.

Lifetime predictions for this scenario (i.e., SI until
June 21, 1979; TI21P until 80 nmi; and tumble thereafter)
are shown in Table 4.3-1. The TI21P configuration was
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maintained until 7:45 GMT on July ii, 1979, when the maneuver
to tumble was initiated.
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TABLE 4.3-1 PREDICTED IMPACT DATL3 USING

SI, 121P AND TUMBLE BC*

Vector Date Impact Date

5/25/79 7/09/79

5/29/79 7/09/79

"/30/79 7/10/79

5/31/79 7/10/79

6/04/79 7/20/79

6/05/79 7/10/'/9

6/06/79 7/10/7 _

6/07/79 7/10/79

6/08/79 7/10/79

6/11/79 7/10/79

6/12/79 7/10/79

6/13/79 7/09/79

6/14/79 7/09/79

6/15//9 7/09/79

6/18/79 7/09/7_

6/19/79 7/10/79

6/20/79 7/10/79

:/2]/79 7/10/79

6/22/79 7/10/79

"NOTE: ST until June 21, 1979. TI21P until 80 nmi, and

Tumble thereafter.
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5. SKYLAB REENTRY (July ii, 1979)

5.1 DRAG MODULATION TO CONTROL REENTRY

With the decision to discontinue the effort to extend Skylab's
orbital lifetime, plan evolved to maintain vehicle control

in various attitudes as a function of altitude, since lower

altitudes resulted in a different aerodynamic drag effect on

the vehicle. By changing the vehicle's attitude at pre-

selected times, its orbital decay rate could be increased or

decreased as necessary to insure that the reentry of Skylab

occ Jrred on an orbit characterized by a low population density.

F<.r example- (I) if it was desired to extend vehicle lifetime

a Pultipl_ Aumber of revolutions, the vehicle could be

maneuvered from the high drag TEA attitude to the low drag
TEL attitude reducing the drag approximately 50% (holding the

low drag attitude for 12 revolutions resulted in a lifetime

extension of approxil ]tely 6 revolutions); (2) a maneuver to

effect a tumble during the terminal phase of decay (below

about 85 nmi to 75 nmi) reduced the drag by appro×imatel} 15%
for a lifetime extension of up to one revolution; and (3)

continued control in a high drag attitude in conjunction with
a tumble (approximately 70 nmi) reduced orbital lifetime by

up to one revolution. In the actual mission, option (2) was

successfully executed at about 81 nmi.

5. i. 1 PROCEDURES

The procedures used in real time were: first, determine the

predicted longitude of the ascending node, time, and impact

position of the reentry orbit; second, estimate the uncer-
tainty in this impact point and time and the associated

population hazard; and third, apply previously established

mission rules to help establish a NASA Headquarters' "veto"

or approval of any proposed maneuver. Decisions were to be

based largely on the initial values of the population hazard,

on the predicted revolution of impact, and the reduction of

that hazard afforded by implementing a maneuver to alter the
aerodynamic drag on the vehicle and thus shifting the revolu-

tion of impact. Ground rules for implementing the maneuver

were: (I) if the revolution of impact was such that a

substantial reduction of risk to the world population occurred, "

the planned maneuver would be implemented unless vetoed with-
in a preset time; (2) if the impact orbit population hazard

was low but the impact point (and its associated footprint)
endangered a populated area, approval was required to imple-

• _ ment a maneuver to shift the impact footprint. Technically,

the procedures varied slightly depending on the maneuver

_ selected. For the low drag attitude multiple revolution shift

: _ maneuver, the plan was to determine the number of revolutions

i
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required to reduce the population hazard without danger of

shifting the impact revolution to one of high population

density. With this accomplished, it was then desirable to
place the predicted impact point over the maximum amount of

water on the impact revolution such that the nominal center

of the footprint (heavy pieces at the front end of the

:ootprint) was ceptered in water. This established the pre-

liminary maneuver time and duration. Final calculations

precisely determined the maneuver time and duration. A

final recommendation was then to be made to implement the
maneuver which would be done autcmatically unless overruled

by NASA Headquarters. For the tumble maneuver, only a small
specified population area was to be protected by shifting

the predicted impact point and its nominal footprint to an

ocean impact. To implement this plan required NASA Head-
quarters' approval. In the actual situation, this was the

procedure used.

The decision criteria for determining what data should be

used to plan and implement the final maneuver went as
follows. Based on historical NORAD statistical data, the

state vector which appeared to correlate most solidly with

the actual determination of final impact was the T-24 hour

vector. Less satisfactory fits resulted with the T-12

hour vector. With the data available from Skylab decay
history since 1974, the vehicle drag coefficients and
associated ballistic terms for the uncontrolled tumble,

end-on-veloc!.ty-vector (EOVV), solar inertial (SI), and

torque equilibrium (TEA) attitudes were determined. Also

based on the results of a simulation performed during the

decay of object #5644 (NORAD numbering system), the signifi-
cance of the phenomena of transition from free molecular to

continuous aerodynamics as altitude decreased was established.

The phenomena was significant for Skylab reentry determina-
tion. Figure 5-1 shows the reduction (ratio) of the drag

coefficient as altitude decreases. The ratio is for CD with

transitional aerodynamic effects considered to CD without
considering transition aerodynamics. The transition from

free molecular aerodynamics was predicted to start at 90 nmi
and to be continuous aerodynamics by C0 nmi. This effect

gradually increased the BC by 20%, with the major effect

occurring before 65 nmi, and extended predicted impact time
by as much as 1 hour and I0 minutes.

The impact time results from the T-18 and T-12 hour vectors

as compared to the T-24 hour vector established an uncer-

tainty of impact of ±25 min (±1/4 revolution). Based on

these results, the time to initiate the tumble was selected

: to place the predicted impact point plus the ±1/4 revolution

)
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uncertainty in the South Atlantic, based on the T-24 hour

vector. The time selected was 7:45 GMT July ii, 1979.

5.1.2 RESULTS

Table 5-1 shows a summary of the projected times, latitude,

and longitude of impact (approximately the forward end of

the footprint) from 72 hours prior to impact until 1 hour

prior to impact. Figure 5-2 shows the population hazard

versus the longitude of the ascending node for the revolu-
tion of impact. To evaluate this data, note that a 22.2

degree delta in node results in a shift of one revolution

or about 88 minutes. On the right is shown the date that

the predictions were made starting with June 25, 1979. All

cases predicted the impact revolution to be on July ii, 1979

but varied from +4 to -2 revolutions until the predictions

made on July 5 and subsequent at which time they were with-
in -+I revolution. The impact prediction was essentially on
the correct revolution from T-24 hours on. This corres-

ponded to the "best" possible revolution of impact denoted
by a low hazard index. The hazard index is the ratio of the

total population beneath a certain orbit to that lying be-

neath the revolution of maximum population.

Figure 5-3 shows the impact predictions based on the base-

line 75 nmi tumble and the predictions that resulted from
the decision to tumble early (81 nmi) for the T-24 hour,

T-18 hour, and T-12 hour vectors. As shown in Figure 5-3,

the predicted impact points for the baseline 75 nmi tumble
(with uncertainty) trended toward the United States and

Canada. These data points are indicated by circles and
spread from the Pacific Ocean (i0 rain from the west coast)

to points just off the east coast (about 5 min from the

east coast). Taking into account the debris footprint
(3500 nmi behind these points), this indicated a relatively

large population area had a high probability of being

impacted by Skylab debris. After the planned maneuver, the

impact area (shown by dots) was shifted to the Indian Ocean

(T-24, T-18, T-12) with a slight probability of an Australian

impact. Additionally, the population density over that por-

ticn of Australia was very low indicating that if an over-

shoot occurred, ther_ would be very little risk to the
population.
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TABLE 5-1 IMPACT PREDICTIONS FOR JULY ii, 1979

Date of Time of Time of Impact Time Impact Location
Vector Vector Estimate (GMT) LAT LONG

(GMT) (Hours) (Deg) (Deg)

7/7 13:16:56 T-72 15:06:51 37.0 S 139.5 E

7/8 16:30:52 T-48 13:53:20 4.5 N 201.1 E

7/8 20:31:19 T-42 13:55:01 10.0 N 205.3 E

7/10 3:02:54 T-36 15:06:49 37.8 S 138.2 E

7/9 15:33:04 T-30 14:49:50 40.3 S 47.9 E

7/10 14:42:06 T-24 15:27:30 23.2 N 194.3 E

7/10 19:31:12 T-18 15:52:15 34.6 N 311.8 E

7/11 2:53:40 T-12 15:50:12 39.5 N 304.1 E

7/11 4:27:53 T-9 16:31:28 44.2 S 102.7 E

7/11 6:53:25 T-7 16:33:03 41.0 S ii0.0 E

7/11 10:03:49 T-6 16:35:04 36.4 S 118.1 E

7/11 11:24:35 T-4 16:37:39 29.6 S 127.2 E

7/11 12:45:43 T-2 16:42:16 16.1 S 140.4 E

7/11 14:16:45 T-I 16:52:44 i; _ N 166.2 E
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5.2 POSTFLIGHT ANALYSIS

5.2.1 RECONSTRUCTION PROCEDURES

Data has been analyzed to reconstruct a best estimate of
what actually occurred, based on observations after the

decision was made to tumble at 81 nmi and what possibly
would have occurred if the tumble had been postponed until
the 75 nmi altitude had been reached. The reconstruction

procedure for Skylab decay was complex due to the extreme

sensitivity that very small deviations in the observed
data has on moving the impact point by a larqe amount. The

data (and uncertainty) and sources used fur this analysis
were as follows:

o Actual Solar Flux Data (±25%) NOAA

o State Vectors Based on Tracking NORAD
(t2 nmi)

o Special Altitude/Time NORAD
Observations

o Range/Elevation, Telemetry Ascension Tracking
(t2 nmi) Site

o Time of Tumble NASA

o Predicted Aerodynamics and NASA

Breakup Sequence

Small uncertainties were associated with the preceding data.
For example, the actual solar flux data was an estimate

provided by NOAA of the final solar flux data which was

not available at the time the analysis was done. If the

data changed by 5%, a three to five-minute change in the

impact time could occur. Another example would be to con-

sider the state vector as being off slightly (2 nmi) in

altitude. Then up to a 10-minute variation in impact time

could occur. Similarly, with the special observation and
range/elevation data. Further, in the case of the T-24

hour prediction, a 1% variation in predicted aerodynamics

or breakup altitude could easily change the impact point

by up to I0 minutes. Finally, it was impossible to separate
these errors_ therefore, no single data base will give the

same impact points when run from each of the different state

vectors. The analysis was based on the following assumptions|

: o Use of estimated solar flux data

o The altitude history as observed should fit

reasonably well with the reconstructed predictions.
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O All orbital workshop (OWS) solar array system (SAS)

arrays were intact at Bermuda.

o The OWS SAS arrays were broken before acquisition

of signal at Ascension

The assumed Skylab breakup scenario was as follows:

o The OWS SAS array (aerodynamically) off at 62 nmi.

o The ATM separates from the remaining OWS at 54 nmi.

o ATM SAS arrays separate from the vehicle between
54 to 50 nmi.

o ATM and OWS break up at 42 nmi.

5.2.2 RECONSTRUCTION ANALYSIS

An analysis was conducted to determine the drag and related

BC of each of the attitude configuration "nominal" impact

points required to match the observed data. First, however,

the effect of the revised breakup sequence was evaluated.

Figure 5-4 depicts the rationale for this analysis. The

upper portion is the timeline showing the times when the NORAD
vectors were obtained. There were three attitude configura-

tions which had to be considered: high drag, TI21P, tumble,
and breakup. Any time/impac_ predictions based on vectors

from T-24 to T-9 required BC'_ for all three configurations.

However, from T-7 to T-I, only tumble and breakup needed to
be considered. The T-7 hour case was selected and the effect

of the revised breakup sequence was determined; this moved

the impact point uprange. The tumble drag coefficient was
varied to adjust the T-7 hour impact point to the actual

impact point. This required a reduction in the tumble drag

coefficient of about 4%. To check the breakup sequence
further, these results were used for the sequence and the

drag coefficient assumptions for each element. The results
of these cases are shown in Figure 5-5 denoted by solid dots.

As expected, these two cases moved closer to each other than

had been estimated from real time results (Figure 5-3). The

T-7 hour vector moved downrange from the Indian Ocean to

close to the actual impact point, and the T-I hour vector

moved uprange from an impact north of the equator to the

northeast tip of Australia. This indicated that the revised
estimate of the tumble drag coefficient and the revised

_ breakup sequence fit quite well.

Having dealt with the tumble and breakup sequence, all

that remained was to adjust the TI21P high drag coefficient.
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Using the T-12 hour vector, the drag coefficient was reduced

by 1/2%. These results are shown in Figure 5-5 again re-

sulting in an impact extremely close to the actual impact

point for the T-12 hour vector and comparing favorably with

all other vectors. The effects of these analyses can be
compared with the real time results shown in Figure 5-3.

Since the T-7 hour vector prediction provided the best
correlation of the analysis to the observed data, the base-

line impact point was derived with the T-7 hour vector

resulting in the following:
MSFC NORAD

Time of Impact - 16:3-_.-37 GMT 16:37:30 GMT

Latitude - 30 Deg South 32 Deg South

Longitude - 127 Deg East 124 Deg East

The final NO._AD impact point is shown for comparison.

As is seen from Figure 5-5 denoted by sol _d dots, the entire

set of reconstructed predictions fall within a quarter
revolution of each other. The altitude fit is shown in

Figure 5-6 for several vectors, from T-12 to T-I. The data

was very close to the observed altitude.

The last set of data generaged shows where the impact points

would have been for the T-24, T-12, and T-9 state vectors if
the baseline 75 nmi (11:35 GMT) tumble had been initiated.

These results are shown as clear circles on the ground track

in Figure 5-5. These reconstructions of the planned 75 nmi

tumble now appear to center about a latitude of approximately
18 degrees north. Also shown are estimates of where the T-2,

T-4 hour impact predictions would have been. As can be seen,

the predictions are as far uprange as about 46 degrees north

latitude. With the extrapolation of the debris footprint,
this shows that a significant probabi'ity of a United States/

Canadian impact still existed after tle reconstruction. The
reconstructed T-7 hour impact prediction and the estimated

T-2 and T-4 hour cases all show significant amounts of debris
in the United States and Canada. These results are all well

within the estimated uncertainty of ±I/4 of a revolution.

The primary cause of Skylab impacting down range from the
nominal impact point was due to the less than expected drag

experienced by the vehicle (4% less) during its tumble phase.

The lack of this knowledge resulted in the planned time to

tumble being earlier than required. In real time it was

felt that drag predictions should be accurate to within ±5%.
• In the actual case the drag was predicted to be within 4%

of what it actually was. Based on real time data, the
decision to tumble at 81 nmi in lieu of waiting until 75 nml

was correct when the accurac I of the data used in making the
decision was considered.
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5.3 IMPACT FOOTPRINT ANALYSIS

Figures 5-7 and 5-8 show a summary of the results of the

footprint analysis of Skylab debris. A more detailed

analysis is presented in Reference 14. This analysis was
based on the following data:

i. Special Perturbations Vector at T-2 hr.

2. Altitude at Ascension overflight = 57 nmi

{derived from elevation and range)

3. OWS arrays still attached but aerodynamically

off (i.e., folded back or dangling at 62 nmi

all arrays off _t 54 nmi)

4. Special altitude observations by NORAD

5. Location of pieces in Australia

a. Oxygen Tanks at 31.15 degrees South, 125.3
degrees East.

b. Water Tanks at 33.8 degrees South, 122.05

degrees East.

c. Heat Exchangers at 33.75 degrees South, 122.1
degrees East

As shown in Figure 5-7, this footprint extends from 46.9

degrees South 94.4 degrees East to 26.0 degrees South,

131.2 degrees East (about 2140 nmi). Figure 5-8 provides

additional detail of the footprint showing the location

of pieces which were found and identifying where major
elements are predicted to be located. The OWS/Cluster and

AM pieces are centered around 32 degrees South, 124 degrees
East, and the ATM pieces are predicted to be centered arourd

28.5 degrees South, 128.5 degrees East. The observed impact

footprint compared favorably to that predicted at the T-2

and T-4 hour impact prediction times and was within -+1/4 orbit

of all predictions made from 18 hours to one hour prior to

impact. The overall best impact prediction (%'-7) and the

NORAD final impact point are denoted.
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6. SUMMARY AND CONCLUSIONS

The last preflight prediction showed a range of the time of

impact from November 1977, for a +2_ atmospheric density,
to June 1982, for a -2a atmospheric density, with the

nominal being October 1979. Considering the many changes

during Skylab's orbital life, this prediction made 7 years

earlier was very close to the July ii, 1979 impact.

One of the primary factors influencing orbital lifetime is

the solar activity prediction. This is the reason ranges

based on statistical data are given, rather than an answer.

This approach is usually adequate unless a Skylab comes
along, and then we would conclude that much additional work

should be done on short (<i year) to intermediate (i to 5

years) solar activity predictions.

Skylab's reactivation and reentry control planning demanded

a degree of accuracy in orbital lifetime predictions which
was beyond the state-of-the-art. Prediction of Skylab's

lifetime was a complex and non-determinate task which

continually required updating as new data was available.

However, Skylab provided a unique opportunity to develop,

confirm, and check out procedures and computer programs which
were used to predict lifetime and reentry, as well as influ-

ence its orbital decay and final reentry time and location.

It also provided verification of aerodynamic environment

which had been predicted in several aerodynamic configura-

tions. This, in turn, provided excellent data on the
atmospheric density model's reaction to rapidly changing

Solar Flux over relatively short periods of time and how to

better account for this in future predictions. A summary of
this is shown here;

Reconstructed BC Theoretical BC

Passive Period

(2/74 - 6/9/78)
(Dynamic

(8/74-1/77 Near GG) 130 101-114 Simu?_ation)

(1/77-11/77 Transition) 130 N/A
(11/77-6/78 Tumble) 130 150 average

(135-160)

Various Attitudes

(6/9/78- 7/25/78) N/A See Figure 4.1-6

EOW (7/25/78 - 1/25/79) 294 average 313 average
(6% density bias) (303-333)
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Reconstructed BC Theoretical BC

SI (1/25/79 - 6/20/79)

(1/25/79 - 5/24/79) 127 average 155 average
(18% density (140-220)

bias)

'_s can be seen, generally the predicted aerodynamics were

quite good.

The density bias that causes an apparent change in the BC

seems to vary with the solar activity. This is under further
,_:tudy and will be covered in Reference 10.

._ttitudc contt'ol in the EOVV attitude effectively reduced the
9rbit decay such that Skylab remained in orbit 3½ months
longer than if the EOVV attitude had not been utilized. This

verified predictions made during the planning for the exten-

sion of Skylab's lifetime. It is further estimated that
.qkylab would have remained in orbit 6 - 9 months longer had

the EOVV attitude been maintained to or near impact.

Finally, procedures for modulating the Skylab's drag to

impact with minimum risk to the earth's population were
t}eveloped and successfully executed, moving the actual impact

|_oint by appL-oximately half a revolution.
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LIST OF ACRONYMS

AM Airlock Module

AR Array Rotated

ASO Array Solar Oriented

ATM Apollo Telescope Mount

BC Ballistic Coefficient

EOW End-On-Velocity Vector

GG Gravity Gradient

GMT Greenwich Mean Time

LM Lunar Module

LTIME Orbital Lifetlme Prediction Program

NOAA National Oceanic and Atmospheric Administration

NORAD North American Air Defense Command

OWS Orbital Workshop

SAO Smithsonian Astrophysical Observatory

SAS Solar Array System

SI Solar Inertial

TEA Torque Equilibrium Attitude

TI21P A High Drag TEA with 121 BC
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